
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

CS 4530
Software Engineering
Lecture 14 - Analysis/Refactoring; Covey.Town Internals

Zoom Mechanics

• Recording: This meeting is being recorded

• If you feel comfortable having your camera on, please do so! If not: a photo?

• I can see the zoom chat while lecturing, slack while you’re in breakout rooms

• If you have a question or comment, please either:

• “Raise hand” - I will call on you

• Write “Q: <my question>” in chat - I will answer 
 your question, and might mention your name and ask you 
 a follow-up to make sure your question is addressed

• Write “SQ: <my question>” in chat - I will answer 
 your question, and not mention your name or expect you to 
 respond verbally

Today’s Agenda

Administrative:

Project Plan due tomorrow!

HW4 due next Friday

Today’s session:

Static analysis + refactoring review + discussion

Static Analysis Review

• Find likely bugs, but programming practices (eslint + LGTM/codeql)

• Extremely difficult to prove that programs are correct

• This is an enormous research area

Refactoring
Martin Fowler

“Any fool can write code that a
computer can understand.
Good programmers write
code that humans can
understand.”

Why Refactor?

• requirements have changed, and a different design is needed

• design needs to be more flexible (so new features can be added)

- design patterns are often a target for refactoring

• address sloppiness by programmers

Example Refactoring
Consolidating duplicate conditional fragments

if (isSpecialDeal()) {
 total = price * 0.95;
 send()
} else {
 total = price * 0.98;
 send()
}

if (isSpecialDeal()) {
 total = price * 0.95;
} else {
 total = price * 0.98;
}
send()

Original Code Refactored Code

Observations

• small incremental steps that preserve program behavior

• most steps are so simple that they can be automated

- automation limited in complex cases

• refactoring does not always proceed “in a straight line”

- sometimes, undo a step you did earlier…

- …when you have insights for a better design

When to refactor?
Refactoring is incremental redesign

• Acknowledge that it will be difficult to get design right the first time

• When adding new functionality, fixing a bug, doing code review, or any time

• Refactoring evolves design in increments

• Refactoring reduces technical debt

• What do you refactor?

Code Smells
Mysterious Name

“We may fantasize about being International
Men of Mystery, but our code needs to be
mundane and clear”

- Martin Fowler on “Mysterious Name”

“Refactoring: Improving the Design of Existing Code,” Martin Fowler, 1992

Code Smells
Shotgun Surgery

“When the changes are all over the place,
they are hard to find, and it’s easy to miss
an important change.”

- Martin Fowler on “Shotgun Surgery”

“Refactoring: Improving the Design of Existing Code,” Martin Fowler, 1992

Code Smells
A complete list (links to book!)

Mysterious Name
Duplicated Code
Long Function
Long Parameter List
Global Data
Mutable Data
Divergent Change
Shotgun Surgery
Feature Envy
Data Clumps
Primitive Obsession
Repeated Switches

“Refactoring: Improving the Design of Existing Code,” Martin Fowler, 1992

Loops
Lazy Element
Speculative Generality
Temporary Field
Message Chains
Middle Man
Insider Trading
Large Class
Alternative Classes with Different Interfaces
Data Class
Refused Bequest

https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec1
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec2
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec3
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec4
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec5
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec6
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec7
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec8
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec9
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec10
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec11
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec12
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec13
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec14
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec15
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec16
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec17
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec18
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec19
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec20
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec21
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec22
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec23

“Local” Refactorings

Rename rename variables, fields methods, classes, packages
provide better intuition for the renamed element’s purpose

Extract Method
extract statements into a new method
enables reuse; avoid cut-and-paste programming
improve readability

Inline Method replace a method call with the method’s body
often useful as intermediate step

Extract Local introduce a new local variable for a designated expression

Inline Local replace a local variable with the expression that defines its value

Change Method
Signature reorder a method’s parameters

Encapsulate Field introduce getter/setter methods

Convert Local
Variable to Field

convert local variable to field
sometimes useful to enable application of Extract Method

Type-Related Refactorings

Generalize Declared Type replace the type of a declaration with a more
general type

Extract Interface create a new interface, and update declarations
to use it where possible

Pull Up Members move methods and fields to a superclass

Infer Generic Type Arguments infer type arguments for “raw” uses of generic
types

Automated Refactorings in VSC

Refactoring Risks

• Developer time is valuable: is this the best use of time today?

• Despite best intentions, may not be safe

• Potential for version control conflicts

Technical Debt

Figures: “Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Life span and the importance of upgrades

Web-Based Video Chat Apps
WebRTC, a standard for:

• Capturing camera + microphone with JS

• Transporting real-time audio + video between
browsers

• Displaying real-time audio + video with JS

• Everything that does video chat in your browser
without a plugin (everything now?) uses WebRTC

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API

Other WebRTC services you might use

• Vonage - Like Twilio, but support calls with 1000’s of participants, livestream
integrations - https://www.vonage.com/

• Jitsi - Open source infrastructure for WebRTC, support calls with 1000’s of
participants, rich meeting UI https://jitsi.org

https://www.vonage.com/
https://jitsi.org

Twilio Programmable Video
Two room “topologies”: P2P + Group

https://www.twilio.com/docs/video/tutorials/understanding-video-rooms

https://www.twilio.com/docs/video/tutorials/understanding-video-rooms

Twilio Programmable Video
Publishers + Subscribers

https://www.twilio.com/docs/video/tutorials/using-bandwidth-profile-api

https://www.twilio.com/docs/video/tutorials/using-bandwidth-profile-api

Twilio Abstractions

https://www.twilio.com/docs/video/tutorials/understanding-video-rooms-apis

https://www.twilio.com/docs/video/tutorials/understanding-video-rooms-apis

Twilio Programmable Video
Tracks & Subscriptions

https://www.twilio.com/docs/video/api/track-subscriptions

https://www.twilio.com/docs/video/api/track-subscriptions

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

